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Driving application: computing intersection multiplicity

Let f1; : : : ; fn 2 k[x1; : : : ; kn] such that V (f1; : : : ; fn) � k[x1; : : : ; kn] is
zero-dimensional. The intersection multiplicityI (p; f1; : : : ; fn) at
p 2 V (f1; : : : ; fn)

in the projective plane, speci�es theweightsof the weighted sum in
B�ezout's Theorem,
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in the projective plane, speci�es theweightsof the weighted sum in
B�ezout's Theorem,

is not natively computable byMaple ,

while it is computable bySingular and Magma only when all
coordinates ofp are ink.

We are interested in removing this algorithmic limitation.

We will combine Fulton's Algorithm approach and the theory of
regular chains.

Our algorithm is complete in the bivariate case.

We propose algorithmic criteria for reducing the case ofn variables to
the bivariate one. Experimental results are also reported. 8 / 47



The case of two plane curves

Given an arbitrary �eldk and two bivariate polynomialsf ; g 2 k[x; y],
consider the a�ne algebraic curvesC := V (f ) and D := V (g) in A2 = k

2
,

wherek is the algebraic closure ofk. Let p be a point in the intersection.

De�nition
The intersection multiplicityof p in V (f ; g) is de�ned to be

I (p; f ; g) = dim k (OA2;p=hf ; gi )

whereOA2;p and dimk (OA2;p=hf ; gi ) are the local ring atp and the
dimension of the vector spaceOA2;p=hf ; gi .
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Given an arbitrary �eldk and two bivariate polynomialsf ; g 2 k[x; y],
consider the a�ne algebraic curvesC := V (f ) and D := V (g) in A2 = k

2
,

wherek is the algebraic closure ofk. Let p be a point in the intersection.

De�nition
The intersection multiplicityof p in V (f ; g) is de�ned to be

I (p; f ; g) = dim k (OA2;p=hf ; gi )

whereOA2;p and dimk (OA2;p=hf ; gi ) are the local ring atp and the
dimension of the vector spaceOA2;p=hf ; gi .

Remark
As pointed out by Fulton in his bookAlgebraic Curves, the intersection
multiplicities of the plane curvesC and D satisfy a series of 7 properties
which uniquelyde�ne I (p; f ; g) at each pointp 2 V (f ; g).
Moreover, theproof is constructive, which leads to an algorithm.
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Fulton's Properties

The intersection multiplicity of two plane curves at a pointsatis�es and is
uniquely determined bythe following.

(2-1) I (p; f ; g) is a non-negative integer for anyC, D, and p such thatC
and D have no common component atp. We setI (p; f ; g) = 1 if C
and D have a common component atp.

(2-2) I (p; f ; g) = 0 if and only if p =2 C \ D.

(2-3) I (p; f ; g) is invariant under a�ne change of coordinates onA2.

(2-4) I (p; f ; g) = I (p; g; f )

(2-5)
I (p; f ; g) is greater or equal to the product of the multiplicity ofp
in f and g, with equality occurring if and only ifC and D have no
tangent lines in common atp.

(2-6) I (p; f ; gh) = I (p; f ; g) + I (p; f ; h) for all h 2 k[x; y].

(2-7) I (p; f ; g) = I (p; f ; g + hf ) for all h 2 k[x; y].
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Fulton's Algorithm

Algorithm 1: IM2(p; f ; g)

Input : p = ( �; � ) 2 A2(k) and f ; g 2 k[y � x] such that gcd(f ; g) 2 k
Output : I (p; f ; g) 2 N satisfying (2-1){(2-7)
if f (p) 6= 0 or g(p) 6= 0 then

return 0;

r ; s = deg(f (x; � )) ; deg(g(x; � )) ; assumes � r .
if r = 0 then

write f = ( y � � ) � h and g(x; � ) = ( x � � )m (a0 + a1(x � � ) + � � �);
return m + IM 2(p; h; g);

IM2(p; (y � � ) � h; g) = IM 2(p; (y � � ); g) + IM 2(p; h; g)

IM2(p; (y � � ); g) = IM 2(p; (y � � ); g(x; � )) = IM 2(p; (y � � ); (x � � )m) = m

if r > 0 then

h  monic (g) � (x � � )s� r monic (f );
return IM2(p; f ; h);

12 / 47



Our goal: extending Fulton's Algorithm

Limitations of Fulton's Algorithm
Fulton's Algorithm

does not generalize ton > 2, that is, to n polynomialsf1; : : : ; fn
2 k[x1; : : : ; xn] sincek[x1; : : : ; xn� 1] is no longer a PID.
is limited to computing the IM at a single point with rational
coordinates, that is, with coordinates in the base �eldk. (Approaches
based on standard or Gr•obner bases su�er from the same limitation)
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does not generalize ton > 2, that is, to n polynomialsf1; : : : ; fn
2 k[x1; : : : ; xn] sincek[x1; : : : ; xn� 1] is no longer a PID.
is limited to computing the IM at a single point with rational
coordinates, that is, with coordinates in the base �eldk. (Approaches
based on standard or Gr•obner bases su�er from the same limitation)

Our contributions
We adapt Fulton's Algorithm such that it can work at any pointof
V (f1; f2), rational or not.
For n > 2, we propose an algorithmic criterion to reduce then-variate
case to that ofn � 1 variables.
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A �rst algorithmic tool: regular chains(1/2)

De�nition
T � k[xn > � � � > x1] is a triangular setif T \ k = ; and
mvar(p) 6= mvar(q) for all p; q 2 T with p 6= q.

For all t 2 T write init (t ) := lc(t ; mvar(t )) and hT :=
Q

t 2 T init (t ). The
saturated idealof T is:

sat(T ) = hT i : h1
T .

Theorem (J.F. Ritt, 1932)

Let V � k
n

be anirreduciblevariety and F� k[x1; : : : ; xn] s.t. V = V (F).
Then, one can compute a (reduced) triangular set T� h Fi s.t.

(8 g 2 hFi ) prem(g; T ) = 0 :
Therefore, we have

V = V (sat(T )) :
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A �rst algorithmic tool: regular chains(2/2)

De�nition (M. Kalkbrner, 1991 - L. Yang, J. Zhang 1991)

T is a regular chainif T = ; or T := T 0[ f t g with mvar(t ) maximum s.t.

T 0 is a regular chain,
init (t ) is regular modulosat(T 0)

Kalkbrener triangular decomposition
For all F � k[x1; : : : ; xn], one can compute a family of regular chains
T1; : : : ; Te of k[x1; : : : ; xn], called aKalkbrener triangular decomposition
of V (F), such that we have

V (F) = [ e
i=1 V (sat(T i )) :
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A second algorithmic tool:the D5 Principle

Original version (Della Dora, Discrescenzo & Duval)

Let f ; g 2 k[x1] such that f is squarefree. Without using irreducible
factorization, one can computef1; : : : ; fe 2 k[x1] such that

f = f1 : : : fe holds and,
for eachi = 1 � � � e, either g � 0 mod fi or g is invertible modulofi .

Multivariate version
Let T � k[x1; : : : ; xn] be a regular chain such thatsat(T ) is
zero-dimensional, thussat(T ) = hT i holds. Letf 2 k[x1; : : : ; xn].

The operationRegularize (f ; T ) computes regular chains
T1; : : : ; Te � k[x1; : : : ; xn] such that

V (T ) = V (T1) [ � � � [ V (Te) holds and,
for eachi = 1 � � � e, either V (T i ) � V (f ) or V (T i ) \ V (f ) = ; holds.

Moreover, only polynomial GCDs and resultants need to be computed,
that is, irreducible factorization is not required.
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Dealing with non-rational points

Working with regular chains
To deal with non-rational points, we extend Fulton's Algorithm to
compute IM2(T ; f1; f2), whereT � k[x1; x2] is a regular chain such that
we haveV (T ) � V (f1; f2).

This makes sense thanks to the theorem below, which isnon-trivial
since intersection multiplicity is really alocal property.
For an arbitray zero-dimensional regular chainT , we apply the D5
Principle to Fulton's Algorithm in order to reduce to the case of the
theorem.

Theorem 1
Recall thatV (f1; f2) is zero-dimensional. LetT � k[x1; x2] be a regular
chain such that we haveV (T ) � V (f1; f2) and the idealhT i is maximal.
Then IM2(p; f1; f2) is the same at any pointp 2 V (T ).
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TriangularizeWithMultiplicity

We specifyTriangularizeWithMultiplicity for the bivariate case.

Input f ; g 2 k[x; y] such that V (f ; g) is zero-dimensional.

Output Finitely many pairs [(T1; m1) ; : : : ; (T` ; m` )] of the form
(T i :: RegularChain; mi :: nonnegint) such that for all
p 2 V (T i )

I(p; f ; g) = mi and V (f ; g) = V (T1) ] � � � ] V (T` ):

ImplementatingTriangularizeWithMultiplicity is done by

�rst calling Triangularize (which encode the points ofV (f ; g)
with regular chains, and

secondly calling IM2(T ; f ; g) for all T 2 Triangularize (f ; g).

This approach allows optimizations such that using the Jacobian criterion
to quickly discover points of IM equal to 1.
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> Fs :=
h�

x2 + y2
� 2 + 3x2y � y3;

�
x2 + y2

� 3 � 4x2y2
i
:

> plots[implicitplot](Fs,x=-2..2,y=-2..2);

> R := PolynomialRing([x; y]; 101):
> rcs := Triangularzie(Fs; R; normalized= `yes̀ ):
> seq (TriangularizeWithMultiplicity (Fs; T ; R) ; T in rcs):""

1;

(
x � 1 = 0

y + 14 = 0

##

;

""

1;

(
x + 1 = 0

y + 14 = 0

##

;

""

1;

(
x � 47 = 0

y � 14 = 0

##

;

""

1;

(
x + 47 = 0

y � 14 = 0

##

;

""

14;

(
x = 0

y = 0

##
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> Fs :=
�
x2 + y + z � 1; x + y2 + z � 1; x + y + z2 � 1

�
:

> R := PolynomialRing([x; y; z]; 101):
> TriangularizeWithMultiplicity (Fs; R):

2

6
4

2

6
41;

8
><

>:

x � z = 0

y � z = 0

z2 + 2z � 1 = 0

3

7
5

3

7
5 ;

2

6
4

2

6
42;

8
><

>:

x = 0

y = 0

z � 1 = 0

3

7
5

3

7
5 ;

2

6
4

2

6
42;

8
><

>:

x = 0

y � 1 = 0

z = 0

3

7
5

3

7
5 ;

2

6
4

2

6
42;

8
><

>:

x � 1 = 0

y = 0

z = 0

3

7
5

3

7
5
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Experiments
System Degree Time(4 ize) #rc's Time(rc im)

h1; 3i 888 9.7 20 19.2

h1; 4i 1456 226.0 8 9.023

h1; 5i 1595 169.4 8 25.4

h3; 5i 1413 22.5 27 28.6

h4; 5i 1781 218.4 9 13.9

h5; 1i 1759 113.0 10 15.8

h6; 8i 1680 99.7 12 37.6

h6; 9i 2560 299.3 10 22.9

h6; 10i 1320 131.9 7 8.4

h6; 11i 1440 59.8 17 27.5

h7; 8i 1152 32.8 12 16.2

h7; 9i 756 18.5 16 11.2

h7; 10i 595 8.1 17 13.0

h7; 11i 648 9.2 25 11.1

h8; 9i 1984 374.5 10 11.3

h8; 10i 1362 232.5 7 9.3

h8; 11i 1256 49.6 17 45.7

h9; 10i 2080 504.9 12 34.812

h9; 11i 1792 115.1 16 17.2

h10; 11i 1180 40.9 17 21.3
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Reducing from dimn to dim n � 1: using transversality (1/2)

De�nition
The intersection multiplicityof p in V (f1; : : : ; fn) is given by

I (p; f1; : : : ; fn) := dim k (OAn;p=hf1; : : : ; fni ) :
whereOAn;p and dimk (OAn;p=hf1; : : : ; fni ) are respectively the local ring at
the point p and the dimension of the vector spaceOAn;p=hf1; : : : ; fni .

The next theorem reduces then-dimensional case ton � 1, under
assumptions which state thatfn does not contribute toI (p; f1; : : : ; fn).
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the point p and the dimension of the vector spaceOAn;p=hf1; : : : ; fni .

The next theorem reduces then-dimensional case ton � 1, under
assumptions which state thatfn does not contribute toI (p; f1; : : : ; fn).

Theorem 2
Assume thathn = V (fn) is non-singular atp. Let vn be its tangent
hyperplane atp. Assume thathn meets each component (throughp) of
the curveC = V (f1; : : : ; fn� 1) transversely (that is, the tangent cone
TCp(C) intersectsvn only at the pointp). Let h 2 k[x1; : : : ; xn] be the
degree 1 polynomial de�ningvn. Then, we have

I (p; f1; : : : ; fn) = I (p; f1; : : : ; fn� 1; h):
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Reducing from dimn to dim n � 1: using transversality (2/2)

The theorem again:

Theorem
Assume that hn = V (fn) is non-singular at p. Let vn be its tangent
hyperplane at p. Assume that hn meets each component (through p) of
the curveC = V (f1; : : : ; fn� 1) transversely (that is, the tangent cone
TCp(C) intersects vn only at the point p). Let h2 k[x1; : : : ; xn] be the
degree 1 polynomial de�ning vn. Then, we have

I (p; f1; : : : ; fn) = I (p; f1; : : : ; fn� 1; h):

How to use this theorem in practise?
Assume that the coe�cient ofxn in h is non-zero, thush = xn � h0, where
h0 2 k[x1; : : : ; xn� 1]. Hence, we can rewrite the idealhf1; : : : ; fn� 1; hi as
hg1; : : : ; gn� 1; hi wheregi is obtained fromfi by substitutingxn with h0.
Then, we have

I (p; f1; : : : ; fn) = I (pjx1;:::;xn� 1; g1; : : : ; gn� 1):
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Reducing from dimn to dim n � 1: a simple case (1/3)

Example
Consider the system

f1 = x; f2 = x + y2 � z2; f3 := y � z3

near the origino := (0 ; 0; 0) 2 V (f1; f2; f3)
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Reducing from dimn to dim n � 1: a simple case (2/3)

Example
Recall the system

f1 = x; f2 = x + y2 � z2; f3 := y � z3

near the origino := (0 ; 0; 0) 2 V (f1; f2; f3):

Computing the IM using the de�nition

Let us compute a basis forOA3;o=hf1; f2; f3i as a vector space overk.

Setting x = 0 and y = z3, we must havez2(z4 + 1) = 0 in
OA3;o = k[x; y; z](z;y;z) .

Sincez4 + 1 is a unit in this local ring, we see that

OA3;o=hf1; f2; f3i = h1; zi

as a vector space, soI (o; f1; f2; f3) = 2.
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Reducing from dimn to dim n � 1: a simple case (3/3)

Example
Recall the system again

f1 = x; f2 = x + y2 � z2; f3 := y � z3

near the origino := (0 ; 0; 0) 2 V (f1; f2; f3):

Computing the IM using the reduction
We have

C := V (x; x + y2 � z2) = V (x; (y � z)(y + z)) = TCo(C)
and we have

h = y:
Thus C and V (f3) intersect transversally at the origin. Therefore, we have

I3(p; f1; f2; f3) = I2((0; 0); x; x � z2) = 2 :
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Reducing from dimn to dim n � 1: via cylindri�cation (1/3)

In practise, this reduction fromn to n � 1 variables does not always apply.
For instance, this is the case forOjika 2:

x2 + y + z � 1 = x + y2 + z � 1 = x + y + z2 � 1 = 0:

Figure: The real points ofV (x2 + y + z � 1; x + y2 + z � 1; x + y + z2 � 1).
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Reducing from dimn to dim n � 1: via cylindri�cation (2/3)

Recall the system

x2 + y + z � 1 = x + y2 + z � 1 = x + y + z2 � 1 = 0:

If one uses the �rst equation, that isx2 + y + z � 1 = 0, to eliminate z
from the other two, we obtain two bivariate polynomialsf ; g 2 k[x; y].

Figure: The real points of
V (x2 + y + z � 1; x + y2 � x2 � y; x � y + x4 + 2 x2y � 2x2 + y2) near the origin.
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Reducing from dimn to dim n � 1: via cylindri�cation (3/3)

At any point of p 2 V (h; f ; g) the tangent cone of the curveV (f ; g) is
independent ofz; in some sense it is \vertical". On the other hand, at any
point of p 2 V (h; f ; g) the tangent space ofV (h) is not vertical.

Thus, the previous theorem applies without computingany tangent cones.

Figure: The real points of
V (x2 + y + z � 1; x + y2 � x2 � y; x � y + x4 + 2 x2y � 2x2 + y2) near the origin.
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Tangent cone computation without standard bases

Assumek = C and none of theV (fi ) is singular atp. For each componentG
through p of C = V (f1; : : : ; fn� 1),

There exists a neighborhoodB of p such thatV (fi ) is not singular at all
q 2 (B \ G ) n f pg, for i = 1 ; : : : ; n � 1.

Let vi (q) be the tangent hyperplane ofV (fi ) at q. Regard
v1(q) \ � � � \ vn� 1(q) as a parametric variety withq as parameter.

Then, TCp(G) = v1(q) \ � � � \ vn� 1(q) when q approachesp.

Finally, TCp(C) is the union of allTCp(G). This approach avoids standard
basis computation and extends for working withV (T ) instead ofp.

But hhow to compute thelimit of v1(q) \ � � � \ vn� 1(q) when approachesp?
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Tangent cone computation with regular chains (1/2)

Algorithm principle
Let m(x1; : : : ; xn) be a point on the curveC = V (f1; : : : ; fn� 1),
Let ~u be a unit vector directing the line (pm)
The set f limm! p;m6= p ~ug describesTCp(C)

Step 1
Let T de a 0-dim regular chain de�ning the pointp; rename its
variables toy1; : : : ; yn.
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Tangent cone computation with regular chains (1/2)

Algorithm principle
Let m(x1; : : : ; xn) be a point on the curveC = V (f1; : : : ; fn� 1),
Let ~u be a unit vector directing the line (pm)
The set f limm! p;m6= p ~ug describesTCp(C)

Step 1
Let T de a 0-dim regular chain de�ning the pointp; rename its
variables toy1; : : : ; yn.
Consider the polynomial system (S) de�ned by T and
f1 = � � � = fn� 1 = 0.
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Tangent cone computation with regular chains (1/2)

Algorithm principle
Let m(x1; : : : ; xn) be a point on the curveC = V (f1; : : : ; fn� 1),
Let ~u be a unit vector directing the line (pm)
The set f limm! p;m6= p ~ug describesTCp(C)

Step 1
Let T de a 0-dim regular chain de�ning the pointp; rename its
variables toy1; : : : ; yn.
Consider the polynomial system (S) de�ned by T and
f1 = � � � = fn� 1 = 0.
This is a 1-dim system in the variablesy1; : : : ; yn; x1; : : : ; xn.
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Tangent cone computation with regular chains (1/2)

Algorithm principle
Let m(x1; : : : ; xn) be a point on the curveC = V (f1; : : : ; fn� 1),
Let ~u be a unit vector directing the line (pm)
The set f limm! p;m6= p ~ug describesTCp(C)

Step 1
Let T de a 0-dim regular chain de�ning the pointp; rename its
variables toy1; : : : ; yn.
Consider the polynomial system (S) de�ned by T and
f1 = � � � = fn� 1 = 0.
This is a 1-dim system in the variablesy1; : : : ; yn; x1; : : : ; xn.
Let R1; : : : ; Re be regular chains decomposing the zero setV of (S).
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Tangent cone computation with regular chains (2/2)

Recall
The set f limm! p;m6= p ~ug describesTCp(C)
Consider the system (S) de�ned by T and f1 = � � � = fn� 1 = 0.
Let R1; : : : ; Re be regular chains decomposing the zero setV of (S).

Step 2
We divide each component of~p m by x1 � y1. This works only if
x1 � y1 vanishes �nitely many timesin V .
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Tangent cone computation with regular chains (2/2)

Recall
The set f limm! p;m6= p ~ug describesTCp(C)
Consider the system (S) de�ned by T and f1 = � � � = fn� 1 = 0.
Let R1; : : : ; Re be regular chains decomposing the zero setV of (S).

Step 2
We divide each component of~p m by x1 � y1. This works only if
x1 � y1 vanishes �nitely many timesin V .
Fix i = 1 � � � e. If x1 � y1 is regular modulo the saturated ideal ofRi ,
then each compliant of ~p m can be divided byx1 � y1.
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Tangent cone computation with regular chains (2/2)

Recall
The set f limm! p;m6= p ~ug describesTCp(C)
Consider the system (S) de�ned by T and f1 = � � � = fn� 1 = 0.
Let R1; : : : ; Re be regular chains decomposing the zero setV of (S).

Step 2
We divide each component of~p m by x1 � y1. This works only if
x1 � y1 vanishes �nitely many timesin V .
Fix i = 1 � � � e. If x1 � y1 is regular modulo the saturated ideal ofRi ,
then each compliant of ~p m can be divided byx1 � y1.
Assumex1 � y1 is regular modulo the saturated ideal ofRi . De�ne
si = xi � yi

x1� y1
. We have~u = (1 ; s2; : : : ; sn).
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Tangent cone computation with regular chains (2/2)

Recall
The set f limm! p;m6= p ~ug describesTCp(C)
Consider the system (S) de�ned by T and f1 = � � � = fn� 1 = 0.
Let R1; : : : ; Re be regular chains decomposing the zero setV of (S).

Step 2
We divide each component of~p m by x1 � y1. This works only if
x1 � y1 vanishes �nitely many timesin V .
Fix i = 1 � � � e. If x1 � y1 is regular modulo the saturated ideal ofRi ,
then each compliant of ~p m can be divided byx1 � y1.
Assumex1 � y1 is regular modulo the saturated ideal ofRi . De�ne
si = xi � yi

x1� y1
. We have~u = (1 ; s2; : : : ; sn).

Let s2; : : : ; sn be variables;extendRj with the polynomials
s2(x1 � y1) � (x2 � y2); : : : ; sn(x1 � y1) � (xn � yn) to a chainSj .
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Tangent cone computation with regular chains (2/2)

Recall
The set f limm! p;m6= p ~ug describesTCp(C)
Consider the system (S) de�ned by T and f1 = � � � = fn� 1 = 0.
Let R1; : : : ; Re be regular chains decomposing the zero setV of (S).

Step 2
We divide each component of~p m by x1 � y1. This works only if
x1 � y1 vanishes �nitely many timesin V .
Fix i = 1 � � � e. If x1 � y1 is regular modulo the saturated ideal ofRi ,
then each compliant of ~p m can be divided byx1 � y1.
Assumex1 � y1 is regular modulo the saturated ideal ofRi . De�ne
si = xi � yi

x1� y1
. We have~u = (1 ; s2; : : : ; sn).

Let s2; : : : ; sn be variables;extendRj with the polynomials
s2(x1 � y1) � (x2 � y2); : : : ; sn(x1 � y1) � (xn � yn) to a chainSj .
Finally f limm! p;m6= p ~ug is given by thelimit points of the Sj 's, that
is, the setsW (Sj ) n W (Sj ).
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Limit points of a quasi-component

Input
Let R � C[X1; : : : ; Xs] be a regular chain.
Let hR be the product of initials of polynomials ofR.
Let W (R) be the quasi-component ofR, that is V (R) n V (hR).

Desired output
The non-trivial limit points ofW (R), that is

lim(W (R)) := W (R)
Z

n W (R):
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Puiseux expansions of a regular chain

Notation
Let R := f r1(X1; X2); : : : ; rs� 1(X1; : : : ; Xs)g � C[X1 < � � � < Xs] be a
1-dim regular chain.
AssumeR is strongly normalized, that is,init (R) 2 C[X1].
Let k = C(hX �

1 i ).
Then R generates a zero-dimensional ideal ink[X2; : : : ; Xs].
Let V � (R) be the zero set ofR in ks� 1.

De�nition
We callPuiseux expansionsof R the elements ofV � (R).

Remarks
The strongly normalized assumptionis only for presentation ease.
Generically, The 1-dim assumption extends to dimensiond � 2.
Higher dimension requires the Jung-Abhyankar theorem.
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An example

A regular chainR

R :=

(
X1X 2

3 + X2

X1X 2
2 + X2 + X1

Puiseux expansions ofR
(

X3 = 1 + O(X 2
1 )

X2 = � X1 + O(X 2
1 )

(
X3 = � 1 + O(X 2

1 )

X2 = � X1 + O(X 2
1 )

(
X3 = X1

� 1 � 1
2X1 + O(X 2

1 )

X2 = � X1
� 1 + X1 + O(X 2

1 )

(
X3 = � X1

� 1 + 1
2X1 + O(X 2

1 )

X2 = � X1
� 1 + X1 + O(X 2

1 )
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Relation between lim0(W(R)) and Puiseux expansions ofR

Theorem

For W � Cs, denote
lim0(W ) := f x = ( x1; : : : ; xs) 2 Cs j x 2 lim(W ) and x1 = 0g;

and de�ne
V �

� 0(R) := f � = (� 1; : : : ; � s� 1) 2 V � (R) j ord(� j ) � 0; j = 1 ; : : : ; s � 1g:
Then we have

lim0(W (R)) = [ � 2 V �
� 0(R) f (X1 = 0 ; �( X1 = 0)) g:

V �
� 0(R) :=

(
X3 = 1 + O(X 2

1 )

X2 = � X1 + O(X 2
1 )

[

(
X3 = � 1 + O(X 2

1 )

X2 = � X1 + O(X 2
1 )

Thus the limit ponts arelim0(W (R)) = f (0; 0; 1); (0; 0; � 1)g:
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Limit points of a quasi-component
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Conclusions

Let f1; : : : ; fn 2 k[x1; : : : ; kn] such that V (f1; : : : ; fn) is zero-dimensional.

For n = 2, in all cases, and forn > 2, under genericity assumptions,
we saw how to compute the intersection multiplicityI (p; f1; : : : ; fn) at
any p 2 V (f1; : : : ; fn).

In some cases, the tangent cone of a curve at a point is computed.

When this happens, computing limit points of constructiblesets may
be computed as well.

All these operations rely on regular chain manipulations instead of
standard basis computation.

They are part of the new moduleAlgebraicGeometryTools of the
next release theRegularChains library.

The latestRegularChains.mla library archive can be downloaded
from www.regularchains.org
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