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Driving application: computing intersection multiplcit

@ in the projective plane, speci es theeightsof the weighted sum in
Bezout's Theorem,

@ is not natively computable byaple ,

@ while it is computable bysingular and Magma only when all
coordinates ofp are ink.

We are interested in removing this algorithmic limitation.

@ We will combine Fulton's Algorithm approach and the theorfy o
regular chains.

@ Our algorithm is complete in the bivariate case.

@ We propose algorithmic criteria for reducing the casenofariables to
the bivariate one. Experimental results are also reported. 8147



The case of two plane curves

Given an arbitrary eldk and two bivariate polynomial§; g 2 k[x;y],

consider the a ne algebraic curve€ := V(f) and D := V(g) in A = Rz,
wherek is the algebraic closure &f. Let p be a point in the intersection.

De nition
The intersection multiplicityof p in V (f; g) is de ned to be

I(p;f;9) =dim(Oazp=H;Qgi)

whereOpz., and din(Oaz,,=Hf ; gi) are the local ring atp and the
dimension of the vector spad®az.,=If; gi.
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The case of two plane curves

Given an arbitrary eldk and two bivariate polynomial§; g 2 k[x;y],
consider the a ne algebraic curve€ := V(f) and D := V(g) in A = Rz,
wherek is the algebraic closure &f. Let p be a point in the intersection.
De nition

The intersection multiplicityof p in V (f; g) is de ned to be

I(p;f;9) =dim(Opz,=H; gi)

whereOpz., and din(Oaz,,=Hf ; gi) are the local ring atp and the
dimension of the vector spad®az.,=If; gi.

Remark

As pointed out by Fulton in his booRlgebraic Curvesthe intersection
multiplicities of the plane curve€ and D satisfy a series of 7 properties
which uniquelyde ne 1(p; f;g) at each pointp 2 V (f; g).

Moreover, theproof is constructive which leads to an algorithm.

10/47




Fulton's Properties

The intersection multiplicity of two plane curves at a poinatis es and is
uniquely determined byhe following.
(2-1) I(p;f;qg) is a non-negative integer for ang, D, and p such thatC
and D have no common component @ We setl(p;f;g)=1 if C
and D have a common component at

(2-2) I(p;f;g)=0ifand onlyif p2 C\ D.
(2-3) I(p;f: Q) is invariant under a ne change of coordinates oA?.
(2-4) 1(p;f;9) = 1(p;g;f)

I(p;f;Q) is greater or equal to the product of the multiplicity qf
(2-5) inf andg, with equality occurring if and only i€ and D have no
tangent lines in common ap.

(2-6) 1(p;f;gh) = 1(p;f;9)+ I(p;f;h) for all h 2 K[x;y].

(2-7) I(p;f;9) = I(p;f;g+ hf) for all h 2 k[x;y].
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Fulton's Algorithm

Algorithm 1: IMy(p;f; Q)

Input: p=(; )2 A?Kk)andf;g2k[y x]such thatgcd(f;g) 2 k
Output : I(p;f;g) 2 N satisfying (2-1){(2-7)

if f(p) 60 or g(p) 60 then

L return O;

r;s= deg(f(x; ));deg(g(x; )); assumes r.

if r =0 then

return m+IM »(p; h; g);
IM2(p;(y ) hig)=IMa(p;(y  ):9)+IM2(p;h;g)
M2(p;(y  );9)=IM2(p;(y  )ig(x; ))=IM2(pi(y )i(x )M)=m
r > 0 then

h monic@ (x ) "monic(f);
return IM(p;f;h);

J—

writef =(y ) handg(x; )=(x )M(ag+ a(x )+ );




Our goal: extending Fulton's Algorithm

Limitations of Fulton's Algorithm
Fulton's Algorithm

@ is limited to computing the IM at a single point with rational
coordinates, that is, with coordinates in the base ekd (Approaches
based on standard or Gmbner bases su er from the same hition)
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Our goal: extending Fulton's Algorithm

Limitations of Fulton's Algorithm
Fulton's Algorithm

@ is limited to computing the IM at a single point with rational
coordinates, that is, with coordinates in the base ekd (Approaches
based on standard or Gmbner bases su er from the same hition)

Our contributions
o We adapt Fulton's Algorithm such that it can work at any poirmatf
V (f1; f2), rational or not.
e Forn> 2, we propose an algorithmic criterion to reduce thevariate
case to that ofn 1 variables.
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A rst algorithmic tool: regular chaingl/2)

De nition
T Kk[x,> > Xq] is atriangular setif T\ k = ; and
mvar(p) 6 mvar(q) for all p;g2 T with p 6 g.
For allt 2 T write init(t) := Ic(t; mvar(t)) and hy := QIZT init (t). The
saturated idealof T is:
saf(T) = Hri:hi.

Theorem (J.F. Ritt, 1932)

LetV K be anirreduciblevariety and F  k[X1;:::;Xq] s.t. V = V(F).
Then, one can compute a (reduced) triangular set h Fi s.t.

(89 2hFi) prem(g;T)=0:
Therefore, we have

V = V(sai(T)):
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A rst algorithmic tool: regular chaing2/2)

De nition (M. Kalkbrner, 1991 - L. Yang, J. Zhang 1991)
T is aregular chainif T = ; or T := TO[f tg with mvar(t) maximum s.t.

o TYis a regular chain,
o init(t) is regular modulcsat(T 9

Kalkbrener triangular decomposition

For allF  Kk[x1;:::;Xn], one can compute a family of regular chains
Tq;:::;Te of K[X1;:::;X,], called aKalkbrener triangular decomposition

of V(F), such that we have
V(F) = [V (sat(Ti)):
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A second algorithmic tookhe D5 Principle

Original version (Della Dora, Discrescenzo & Duval)
Let f;g 2 K[x1] such thatf is squarefree. Without using irreducible

o f = f1:::fe holds and,

o for eachi=1 e, eitherg 0 modf; or g is invertible moduld.

Multivariate version
Let T  K[xg;:::;Xn] be a regular chain such thatat(T) is

o V(T)=V(T)[ [ V(Te) holds and,

o foreachi =1 e, eitherV(T;) V(f)orV(T;)\ V(f)=; holds.

Moreover, only polynomial GCDs and resultants need to be mated,
that is, irreducible factorization is not required.




Dealing with non-rational points

Working with regular chains
To deal with non-rational points, we extend Fulton's Algitnin to

compute IMy(T ; f1;f2), whereT  K[x1;X2] is a regular chain such that

we haveV (T) V(fy;fo).
@ This makes sense thanks to the theorem below, whichas-trivial
since intersection multiplicity is really cal property
o For an arbitray zero-dimensional regular chdin we apply the D5
Principle to Fulton's Algorithm in order to reduce to the ca®f the
theorem.

Theorem 1

Recall thatV (f1; f,) is zero-dimensional. LeT  K[x1; X2] be a regular
chain such that we hav® (T) V(fy;f2) and the idealhT i is maximal.
Then IMy(p; f1; f2) is the same at any poinp 2 V (T).

18
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TriangularizeWithMultiplicity

We specifyTriangularizeWithMultiplicity for the bivariate case.

Input f;g 2 K[x;y] such thatV (f; g) is zero-dimensional.

(Ti :: RegularChainm; :: nonnegint) such that for all
p2V(Ti)

I(p;f;9)=m and V(f;9)=V(T1)] ] V(T):

ImplementatingTriangularize WithMultiplicity is done by

o rst calling Triangularize  (which encode the points o¥ (f ; g)
with regular chains, and

o secondly calling IM(T ;f;g) for all T 2 Triangularize (f;Q).

This approach allows optimizations such that using the Jaiem criterion
to quickly discover points of IM equal to 1.
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> Fsi= x2+y22+3x%y y3 x2+y2° ax?y?

> plots[implicitplot](Fs,x=-2..2,y=-2..2);
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> R := PolynomialRing[x;y]; 101):
> rcs:= Triangularzie(Fs; R; normalized= "yes):
>....se(i (Triangulariz%\élithMuI{iplicity Es T; %& ;T in (rcs): it
. x 1=0 . . x+1=0 T X 47=0
' y+14=0 ' " y+14=0 ' "y 14=0
" ## " ( Hit

1 X+47=0 .14 x=0
y 14=0 y=0
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>Fs:= xX°+y+z Lx+y?+z Lx+y+z> 1:

> R := PolynomialRing([x;y; z]; 101):

> Tmngtﬂ%rlz%WlthMultlpllcnyF§§)22 8 33
2 X z=0

IR 48 | P 2.

z2+2z 1=0 Tz
22 8 33 22 8

992 f Lo L

< X
=0
N o o

w ©
w

55

II = II
N <

1 e
o O 1

21/47



Experiments

‘ SystemH Degree‘ Time(4 ize) ‘ #rc's ‘ Time(rc_im) ‘

hi; 3
h; 4
ht; 5i
h3; 5i
4; 5i
16; 1i
h6; 8i
he; 9i
h6; 10i
he; 11i
h7; 8
h7; 9
h7; 10i
h7; 12i
8; 9
8; 10i
h8; 11i
ho; 10i
ho; 11i
hl0; 11i

888
1456
1595
1413
1781
1759
1680
2560
1320
1440
1152

756

595

648
1984
1362
1256
2080
1792
1180

9.7
226.0
169.4
225
218.4
113.0
99.7
299.3
131.9
59.8
32.8
18.5
8.1
9.2
3745
2325
49.6
504.9
115.1
40.9

20
8
8

27
9

10

12

10
7

17

12

16

17

25

10
7

17

12

16

17

19.2
9.023
25.4
28.6
13.9
15.8
37.6
22.9
8.4
275
16.2
11.2
13.0
11.1
11.3
9.3
45.7
34.812
17.2
21.3
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Reducing from dinm to dimn  1: using transversality (1/.

De nition
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Reducing from dinm to dimn  1: using transversality (1/.

De nition

Theorem 2

Assume thath, = V (fn) is non-singular atp. Let v, be its tangent
hyperplane afp. Assume thath, meets each component (through) of
the curveC= V (fy;:::;fy 1) transversely (that is, the tangent cone
TCo(O mtersectsvn only at the pomtp) Let h 2 K[xy;:::;%y] be the
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Reducing from dinm to dimn  1: using transversality (2/.

The theorem again:

Theorem

Assume that R = V (f,) is non-singular at p. Let ybe its tangent
hyperplane at p. Assume that,hmeets each component (through p) of

How to use this theorem in practise?
Assume that the coe cient ofx, in h is non-zero, thuhr = x, h® where




Reducing from dinm to dimn 1: a simple case (1/3)

Example
Consider the system

fi=x; fo=x+y? 2z
near the origino := (0; 0;0) 2 V (f1; f2; f3)

 fa=y 28
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Reducing from dinm to dimn 1: a simple case (2/3)

Example

Recall the system
fi=x; fo=x+y? 2% fz3=y 23
near the origino := (0;0;0) 2 V (fy; fy; f3):

Computing the IM using the de nition

Let us compute a basis fdDas.,=h1; f2; f3i as a vector space ovéx.
Settingx =0 and y = z3, we must havez?(z* +1) =0 in

C)A3;o = E[X;y; Z](z;y;z)-

Sincez* + 1 is a unit in this local ring, we see that

OA3;02|’f1; fz; f3i = hl; Zi

as a vector space, siqo; fy; fo; f3) = 2.
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Reducing from dinm to dimn 1: a simple case (3/3)

Example
Recall the system again

fi=x; fo=x+y? z% fai=y z
near the origino := (0;0;0) 2 V (fy; f2; f3):

Computing the IM using the reduction
We have
Ci= V(x+y> 2% = V(x(y 2z)(y+2)= TCo(O
and we have
h=y:

Thus C and V (f3) intersect transversally at the origin. Therefore, we hav

I3(p; f1;f2;f3) = 1((0;0);x;x  z%)=2:

-

28147
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Reducing from dinm to dimn  1: via cylindri cation (1/3)

In practise, this reduction froom to n 1 variables does not always apply
For instance, this is the case f@jika 2

X2+y+z 1=x+y?+z 1=x+y+2z> 1=0:

\/
.

Figure: The real points ofV (x2+ y+ z Lx+y?+2z Lx+y+2> 1)
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Reducing from dinm to dimn  1: via cylindri cation (2/3)

Recall the system
X2+y+z 1=x+y?+z 1=x+y+2z2 1=0:

If one uses the rst equation, that ix>+ y+ z 1 =0, to eliminate z
from the other two, we obtain two bivariate polynomialsg 2 k[x;y].

Figure: The real points of
V(X2+y+z Lx+y? x2 y;x y+x*+2x% 2x%+ y?) near the origin.
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Reducing from dinm to dimn  1: via cylindri cation (3/3)

At any point of p 2 V (h;f; g) the tangent cone of the curv&/ (f;qg) is
independent ofz; in some sense it is \vertical". On the other hand, at any
point of p 2 V (h;f; g) the tangent space o¥ (h) is not vertical.

Thus, the previous theorem applies without computiagy tangent cones.

Figure: The real points of
Vx2+y+z Lx+y? x2 y;x y+x*+2x% 2x?+ y?) near the origin.
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Tangent cone computation without standard bases

Assumek = C and none of theV (f;) is singular atp. For each componenG
throughp of C= V (f1;::1;fn 1),

@ There exists a neighborhodd of p such thatV (f;) is not singular at all
q2 (B\G)nfpg,fori=1;:::;n 1.

e Letvi(q) be the tangent hyperplane d¥ (f;) at q. Regard
vi(@)\  \ vy 1(q) as a parametric variety witlg as parameter.

@ Then, TCp(G) = vai(q)\ \ v, 1(g) whenq approaches.

@ Finally, TC,(Q) is the union of allTC,(G). This approach avoids standard
basis computation and extends for working with(T ) instead ofp.

But hhow to compute thelimit of vi(q)\ \ vy 1(gq) when approachep?
32/47



Tangent cone computation with regular chains (1/2)

Algorithm principle

o Letd be a unit vector directing the linepm)
o The setflimy p:mep tig describesTCpy(C)

Step 1

@ Let T de a 0-dim regular chain de ning the poirg; rename its
variables toys;:::; yn.
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Tangent cone computation with regular chains (1/2)

Algorithm principle

o Letd be a unit vector directing the linepm)
o The setflimy p:mep tig describesTCpy(C)

Step 1
@ Let T de a 0-dim regular chain de ning the poirg; rename its
variables toys;:::;yn

@ Consider the polynomial systens) de ned by T and
f1 = = fn 1= 0.
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Tangent cone computation with regular chains (2/2)

Recall
@ The setflimy p:mep tig describesTCp(C)

@ Consider the systemS) de ned by T andf; = =f, 1=0.
o Let Ry;:::;Re be regular chains decomposing the zero ¥ebf (S).
Step 2

o We divide each component gfm by X1 y1. This works only if
X1 Y1 vanishes nitely many timesn V.
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Tangent cone computation with regular chains (2/2)

Recall
@ The setflimy p:mep tig describesTCp(C)

@ Consider the systemS) de ned by T andf; = =fy, 1=0.
o Let Ry;:::;Re be regular chains decomposing the zero ¥ebf (S).
Step 2

o We divide each component gfm by X1 y1. This works only if
X1 Y1 vanishes nitely many timesn V.

o Fixi=1 e Ifxg vy isregular modulo the saturated ideal &,
then each compliant op-m can be divided by; vi.

° Assumexl y1 is regular modulo the saturated ideal &. De ne

X |

S = - Wehaveu-(l S S)
o Lets;::: ;sn be variablespxtendR; with the polynomials
S2(x1 Y1) (2 Y2)iiinis(xa y1) (% yn) to achain§.

o Finallyflimm p:mep tig is given by thelimit points of the §'s, that
is, the setsW (§) nW (§).




Limit points of a quasi-component

Input

@ Let hg be the product of initials of polynomials d?.
o Let W(R) be the guasi-component dR, that is V(R) nV (hr).

Desired output
The non-trivial limit points of W (R), that is

im(W (R)) := W(R)" nW(R):
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Puiseux expansions of a regular chain

Notation
o LetR:= fry(Xe; Xo);:::;rs 1(Xg;::::Xs)g  C[Xy < < Xg] be a
1-dim regular chain.
@ AssumeR is strongly normalized, that ishit (R) 2 C[X4].
o Letk = C(hXyi).

o LetV (R) be the zero set oR in kS 1.

De nition
We call Puiseux expansionsf R the elements oV (R).

Remarks
o The strongly normalized assumptiois only for presentation ease.
@ Generically, The dim assumption extends to dimensiah 2.
@ Higher dimension requires the Jung-Abhyankar theorem.



An example

A regular chairR

R :=

Puiseux expansions Bf

(
Xz = 1+ O(X?)

Xy = X1+ O(X?)
Xs = Xp ' IXi+ O(X?)
Xo = Xy 1+ X+ O(XD)

X1X2 + Xa
X1XZ+ Xo+ X1

X2

X3

1+ O(X?)
X1+ O(X9)

X1 1+ X1+ O(XP)
X1 1+ Xy + O(X?)

o

4447



Relation between ligdW (R)) and Puiseux expansions Rf

Theorem

For W CS, denote
limo(W) = fx =(xg3;:::;%) 2 C5jx 2 lim(W) and x; =0g;
and de ne
VR =f=( Lo shHh2av (Rjord( 1) 0j=1;::1s8 1g
Then we have

limo(W(R)) = [ 2v (r)f(X2=0; ( X2=0)) g

(
Xz = 1+ O(X?) [ Xe S 1+ 0(Xd)
Xo = X1+ O(Xd) Xo = Xp+ O(X?)

Thus the limit ponts arelimo(W (R)) = f(0;0;1); (0;0; 1)g:

V o(R) =
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Limit points of a quasi-component
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)

Conclusions

In some cases, the tangent cone of a curve at a point is conmhute

When this happens, computing limit points of constructitdets may
be computed as well.

All these operations rely on regular chain manipulationstéad of
standard basis computation.

They are part of the new modulé@lgebraicGeometryTools of the
next release th&regularChains library.

@ The latestRegularChains.mla library archive can be downloaded

from www.regularchains.org
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