
> >

(1.1)(1.1)

> >

(2.1.1)(2.1.1)

(2.1.2)(2.1.2)

> >

Computing the integer points of polyhedral sets with
the Polyhedra library

1. Introduction
The Polyhedra library offers commands to compute the integer solutions to a
linear system. The input system contains linear equations, as well as linear
inequalities. For a given linear system, the coefficients must be in the field of
rational numbers.
Let us instanciate the library for working with 4-dimensional polyhedral sets with
coordinates x, y, z, w :

r e s t a r t :
PLHD := Polyhedra([x ,y ,z ,w]) ;wi th(PLHD);

2. Functions
This section introduces the user to the main command of the Polyhedra library.

2.1 Canonicalize
The input system consists of equations, inequalities and the boolean value HNF
with default value true. The command finds the integer solutions common
tothe input equations, as well to the implicit equations in the inequality system.
If HNF is set to be true, this function will use the HNF method, otherwise, it will
use the Pugh's method. Moreover, after replacing the solved equations with
their solutions, the inequality system is simplified to a triangularized form,
which has no implicit equations and no redundant inequalities. Each inequality
in this triangularized fo m has content 1. Finally, this function will output the
solved equations and the simplified inequalities.

e q u a t i o n s : = [] ;
i n e q u a l i t i e s : = [2 * x + 3 * y - 4 * z + 3 * w < = 1 ,
 - 2 * x - 3 * y + 4 * z - 3 * w < = - 1 ,
 - 1 3 * x - 1 8 * y + 2 4 * z - 2 0 * w < = - 1 ,
 - 2 6 * x - 4 0 * y + 5 4 * z - 3 9 * w < = 0 ,
 - 2 4 * x - 3 8 * y + 4 9 * z - 3 1 * w < = 5 ,
 5 4 * x + 8 1 * y - 1 0 9 * z + 8 1 * w < = 2] ;

c a n o n : = C a n o n i c a l i z e (e q u a t i o n s , i n e q u a l i t i e s , [x , y , z , w] ,

(2.2.1)(2.2.1)

> >

> >

> >

(2.2.2)(2.2.2)

(2.1.2)(2.1.2)

(2.1.3)(2.1.3)

> >

t r u e) ;

c a n o n : = C a n o n i c a l i z e (e q u a t i o n s , i n e q u a l i t i e s , [x , y , z , w] ,
f a l s e) ;

2.2 DarkShadow
The input system consist of an inequality system, a variable list specifying an
elimination order as well boolean values HNF, partition and recursive, all with
default values true. This function aims at giving a representation of the dark
shadow of the polyhedron defined by the inequality system w.r.t. the first
variable in the variable list. This representation is a system of linear
inequalities. If recursive is set to be true, the function will call IntegerSolve on
this representation with dark_shadow and grey_shadow both equal to true,
and HNF and partition set as the input of the original call. If recursive is set to
false, this representation is simply returned.

e q u a t i o n s : = [] ; i n e q u a l i t i e s : = [3 * x - 2 * y + z < = 7 , - 2 * x + 2 * y - z
< = 1 2 , - 4 * x + y + 3 * z < = 1 5 , - y < = - 2 5] ;

D S : = DarkShadow(inequa l i t ies , [x ,y ,z]) ;
map(Display, DS);

2.3 GreyShadow

The input system consists of the inequality system, a variable list specifying an
elimination order and the boolean values HNF, partition and cleanup, all with

> >

(2.3.1)(2.3.1)

> >

(2.4.1)(2.4.1)

> >

(2.1.2)(2.1.2)

> >

default values true.
This function computes the grey shadow w.r.t. the first variable in the variable
list. Each part of the output system consists of solved equations and
inequalities. If HNF is set to be true, the solved equations is obtained by HNF
method, otherwise, by Pugh's method. If partition is set to be true, each integer
point in the grey shadow must be in exactly one part of the output. The boolean
value recursive is similar to what we have introduced in Section 2.2.

GS := GreyShadow(inequa l i t i es , [x ,y , z]) ;
map(Display, GS);

2.4 RealShadow
This function mainly uses the command RegularChains:-
SemiAlgebraicSetTools:-LinearSolve to obtaina a representation of the input
linear system. Note that simplification is done over the rational numbers
whereas Canonicalize, DarkShadow,
GreyShadow and IntegerSolve return integer points.

R S : = R e a l S h a d o w (e q u a t i o n s , i n e q u a l i t i e s , [x , y , z]) ;

2.5 Plot
This section illustrates the other one by ploting an input polyhedron, its dark
shadow, its real shdow and the difference between the latter two.

with(Polyhedra lSets) :
s y s : = [o p (e q u a t i o n s) , o p (i n e q u a l i t i e s)] ;
SP := Po lyhedra lSet (sys) ;
DP := PolyhedralSet ([op(DS[1] [EQS]) , op(DS[1] [INEQS]) , x=0] ,
[x , y , z]) ;
R P : = P o l y h e d r a l S e t ([o p (R S) , x = 0] , [x , y , z]) ;
po in t_ in_DP := Po lyhedra lSet ([x=0 , y=29 , z=9]) ;
Region_ in_sys := Polyhedra lSet ([op(sys) , y=29 , z=9]) ;
P lo t ([SP, DP, RP, po in t_ in_DP, Region_ in_sys] , co lor= [b lue ,
b l u e , g r e y , r e d , r e d] , t r a n s p a r e n c y = [0 . 8 , 0 . 5 , 0 . 8 , 0 . 5 ,
0 . 5]) ;

(2.1.2)(2.1.2)

> >

> >

(2.1.2)(2.1.2)

We can see the point (y, z) = (29, 9) is in the real shadow, but not in the dark
shadow.
Substitute (y, z) = (29, 9) to the input system, we get 37/2 <= x <= 56/3, which
contains no integer value.

2.6 IntegerSolve
This section will introduce the main command of the library,
namelyIntegerSolve.The input consists of a system of linear constraints and
optional arguments. The system of constrainsts can be given either as two lists
(one for linear equations, one for linear inequalities) or two matrices (defining
respectively linear equations and linear inequalities). These two different input
formats correspond to two different implementations (one using sparse
polynomial expressions and one using dense linear algebra) of the same
algorithm. The output is a list of Z-polyhedra, the union of which represents
the integer points of the input polyhedron. Each of these output Z-polyhedra
has at least one integer point and enjoys a property similar to that of a regular
chain: every integer point in a projection of that Z-polyhedron can be lifted to
an integer point of that Z-polyhedron.

(2.6.1)(2.6.1)

> >

(2.1.2)(2.1.2)

> >

The command takes optional boolean arguments dark_shadow, grey_shadow,
HNF and partition, all with default values true. It calls the commands
DarkShadow and GreyShadow. If we turn off dark_shadow (set it to be false),
this function will only implement the GreyShadow. Same with the grey_shadow.
 The option HNF is to choose the methods (HNF or Pugh's method) to solve the
equations. The options partition is to determine whether we want a disjoint
decomposition of the integer points or not.

restar t : PLHD:=Polyhedra([x ,y ,z]) : w i th (PLHD) :
e q u a t i o n s : = [] ; i n e q u a l i t i e s : = [3 * x - 2 * y + z < = 7 , - 2 * x + 2 * y - z
< = 1 2 , - 4 * x + y + 3 * z < = 1 5 , - y < = - 2 5] ; v a r s : = [x , y , z] ;
r e s : = I n t e g e r S o l v e (e q u a t i o n s , i n e q u a l i t i e s , v a r s , t r u e , t r u e ,
t r u e , t r u e) ;
map(Disp lay , res) ;

(2.6.3)(2.6.3)

> >

> >

(2.6.2)(2.6.2)

(2.1.2)(2.1.2)

> >

r e s : = I n t e g e r S o l v e (e q u a t i o n s , i n e q u a l i t i e s , v a r s , t r u e , t r u e ,
f a l s e , t r u e) ;
map(Disp lay , res) ;

r e s : = I n t e g e r S o l v e (e q u a t i o n s , i n e q u a l i t i e s , v a r s , t r u e , t r u e ,
t r u e , f a l s e) ;
map(Disp lay , res) ;

(2.6.2)(2.6.2)

(2.6.3)(2.6.3)

> >

(2.1.2)(2.1.2)

> >

(2.6.3)(2.6.3)

> >

> >

> >

(2.6.2)(2.6.2)

(2.1.2)(2.1.2)

(2.6.4)(2.6.4)

r e s : = I n t e g e r S o l v e (e q u a t i o n s , i n e q u a l i t i e s , v a r s , t r u e , t r u e ,
f a l s e , f a l s e) ;
map(Disp lay , res) ;

> >

(2.6.3)(2.6.3)

> >

> >

(2.6.2)(2.6.2)

(3.1)(3.1)

(2.1.2)(2.1.2)

(2.6.4)(2.6.4)

3. Functions in Matrix form

The commands presented in this section are internal. Nevertheless, they may be of
interestt to developers. They support the implementation of IntegerSolve based on
dense linear algebra. This latter is likely to be faster than the implementation
based on polynomial expression for test-cases where polyhedra have large
numbers of facets and where computations tend to densify. In this section, all
the three functions have the same input format, that is, ME_in :: {Matrix, list},
MI_in :: {Matrix, list}, where ME_in and MI_in represent systems of equations and
inequalities, respectively. See the following example:

M E _ i n : = [] ;
M I _ i n : = [[3 , - 2 , 1 , 7] , [- 2 , 2 , - 1 , 1 2] , [- 4 , 1 , 3 , 1 5] , [0 ,
- 1 , 0 , - 2 5]] ;

This is equivalent to input: equations := [];
 inequalities := [3*x1-2*x2+x3 <= 7, -2*x1+2*x2-x3 <= 12, -4*x1 + x2 +

> >

(2.6.3)(2.6.3)

> >

(4.1)(4.1)

(3.1.1)(3.1.1)

> >

(2.6.2)(2.6.2)

(2.1.2)(2.1.2)

(2.6.4)(2.6.4)

> >

3*x3 <= 15, -x2 <= -25];
Note that this is the example we used above.

3.1 LAFMelim
Input ME_in :: {Matrix, list}, MI_in :: {Matrix, list}, the function LAFMelim will
compute its the real projection over rational numbers, based the Fourier-
Motzkin elimination.
Ouptput ME_out :: {Matrix, list} and MI_out :: {Matrix, list}, where ME_out and
MI_out represent systems of equations and inequalities, respectively.

PLHD:-LAFMelim(ME_in, MI_in);

3.2 LACanonicalize
Input ME_in :: {Matrix, list}, MI_in :: {Matrix, list}, the function LAFMelim will solve
the equations, remove the redundant inequalites and output a block-
triangularlized matrix.
Output ME_out :: {Matrix, list} and MI_out :: {Matrix, list}, where ME_out and MI_out
represent systems of equations and inequalities, respectively.

PLHD:-LACanonicalize(ME_in, MI_in);

(2.6.3)(2.6.3)

> >

(4.1)(4.1)

> >

> >

(2.6.2)(2.6.2)

(5.1)(5.1)

(2.1.2)(2.1.2)

(2.6.4)(2.6.4)

3.3 LAIntegerSolve
Input ME_in :: {Matrix, list}, MI_in :: {Matrix, list}, the function LAIntegerSolve will
decompose the polyhedron represented by them into several "simpler" polyhedra,
each "simpler" polyhedron contains at least one integer point and all the integer
points in the original polyhedron lie in exactly one "simpler" polyhedron.

dec := PLHD:-LAIntegerSolve(ME_in, MI_in);
map(PLHD:-Display, dec);

(5.3)(5.3)

(2.6.3)(2.6.3)

> >

(4.1)(4.1)

> >

> >

> >

(2.6.2)(2.6.2)

(2.1.2)(2.1.2)

(5.2)(5.2)

(2.6.4)(2.6.4)

t ime(PLHD:-LAIntegerSolve(ME_in, MI_in));
0.826

e q u a t i o n s : = [] ; i n e q u a l i t i e s : = [3 * x - 2 * y + z < = 7 , - 2 * x + 2 * y - z < =
1 2 , - 4 * x + y + 3 * z < = 1 5 , - y < = - 2 5] ; v a r s : = [x , y , z] ;
t ime(PLHD: - In tegerSolve(equat ions , inequa l i t ies)) ;

2.442

