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Computing the integer points of polyhedral sets with 
the Polyhedra library

1. Introduction
The Polyhedra library offers commands to compute the integer solutions to a 
linear system. The input system contains linear equations, as well as linear 
inequalities. For a given linear system, the coefficients must be in the field of 
rational numbers. 
Let us instanciate the library for working with 4-dimensional polyhedral sets with 
coordinates x, y, z, w :

r e s t a r t :
PLHD := Polyhedra( [x ,y ,z ,w]) ;wi th(PLHD);

2. Functions
This section introduces the user to the main command of the Polyhedra library.

2.1 Canonicalize
The input system consists of equations, inequalities and the boolean value HNF 
with default value true. The command finds the integer solutions common 
tothe input equations, as well to the implicit equations in the inequality system.
If HNF is set to be true, this function will use the HNF method, otherwise, it will
use the Pugh's method. Moreover, after replacing the solved equations with 
their solutions, the inequality system is simplified to a triangularized form, 
which has no implicit equations and no redundant inequalities. Each inequality 
in this triangularized fo m has content 1. Finally, this function will output the 
solved equations and the simplified inequalities.

e q u a t i o n s  : =  [ ] ;
i n e q u a l i t i e s  : =  [  2  *  x + 3  *  y - 4  *  z + 3  *  w  < =   1 ,
        - 2  *  x - 3  *  y + 4  *  z - 3  *  w  < =   - 1 ,
        - 1 3  *  x - 1 8  *  y + 2 4  *  z - 2 0  *  w   < =   - 1 ,
        - 2 6  *  x - 4 0  *  y + 5 4  *  z - 3 9  *  w   < =   0 ,
        - 2 4  *  x - 3 8  *  y + 4 9  *  z - 3 1  *  w   < =   5 ,
        5 4  *  x + 8 1  *  y - 1 0 9  *  z + 8 1  *  w   < =   2 ] ;

c a n o n  : =  C a n o n i c a l i z e ( e q u a t i o n s ,  i n e q u a l i t i e s ,  [ x ,  y ,  z ,  w ] ,
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t r u e ) ;

c a n o n  : =  C a n o n i c a l i z e ( e q u a t i o n s ,  i n e q u a l i t i e s ,  [ x ,  y ,  z ,  w ] ,
f a l s e ) ;

2.2 DarkShadow
The input system consist of an inequality system, a variable list specifying an 
elimination order as well boolean values HNF, partition and recursive, all with 
default values true. This function aims at giving a representation of the dark 
shadow of the polyhedron defined by the inequality system w.r.t. the first 
variable in the variable list. This representation is a system of linear 
inequalities.  If recursive is set to be true, the function will call IntegerSolve on 
this  representation  with dark_shadow and grey_shadow both equal to true, 
and HNF and partition set as the input of the original call.  If recursive is set to 
false, this representation is simply returned.

e q u a t i o n s  : =  [ ] ;  i n e q u a l i t i e s  : =  [ 3 * x - 2 * y + z < =  7 ,  - 2 * x + 2 * y - z  
< =  1 2 ,  - 4 * x + y + 3 * z  < =  1 5 ,  - y  < =  - 2 5 ] ;

D S  : =  DarkShadow( inequa l i t ies ,  [x ,y ,z ]) ;
map(Display,  DS);

2.3 GreyShadow

The input system consists of the inequality system, a variable list  specifying an
elimination order and the boolean values HNF, partition and cleanup, all with 
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default values true.
This function computes the grey shadow w.r.t. the first variable in the variable 
list. Each part of the output system consists of solved equations and 
inequalities.  If HNF is set to be true, the solved equations is obtained by HNF 
method, otherwise, by Pugh's method. If partition is set to be true, each integer 
point in the grey shadow must be in exactly one part of the output. The boolean
value recursive is similar to what we have introduced in Section 2.2.

GS :=  GreyShadow( inequa l i t i es ,  [x ,y , z ] ) ;
map(Display,  GS);

2.4 RealShadow
This function mainly uses the command  RegularChains:-
SemiAlgebraicSetTools:-LinearSolve to obtaina a representation of the input 
linear system. Note that simplification is done over the rational numbers 
whereas Canonicalize, DarkShadow,
GreyShadow and IntegerSolve return integer points.

R S  : =  R e a l S h a d o w ( e q u a t i o n s ,  i n e q u a l i t i e s ,  [ x ,  y ,  z ] ) ;

2.5 Plot
This section illustrates the other one by ploting an input polyhedron, its dark 
shadow, its real shdow and the difference between the latter two.

with(Polyhedra lSets) :
s y s  : =  [ o p ( e q u a t i o n s ) ,  o p ( i n e q u a l i t i e s ) ] ;
SP  :=  Po lyhedra lSet (sys) ;  
DP :=  PolyhedralSet ( [op(DS[1] [EQS]) ,  op(DS[1] [ INEQS]) ,  x=0] ,
[ x , y , z ] ) ;  
R P  : =  P o l y h e d r a l S e t ( [ o p ( R S ) ,  x = 0 ] ,  [ x , y , z ] ) ;
po in t_ in_DP :=  Po lyhedra lSet ( [x=0 ,  y=29 ,  z=9 ] ) ;
Region_ in_sys  :=  Polyhedra lSet ( [op(sys) ,  y=29 ,  z=9] ) ;
P lo t ( [SP,  DP,  RP,  po in t_ in_DP,  Region_ in_sys] ,  co lor= [b lue ,  
b l u e ,  g r e y ,  r e d ,  r e d ] ,  t r a n s p a r e n c y  =  [ 0 . 8 ,  0 . 5 ,  0 . 8 ,  0 . 5 ,  
0 . 5 ] ) ;
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We can see the point (y, z) = (29, 9) is in the real shadow, but not in the dark 
shadow. 
Substitute (y, z) = (29, 9) to the input system, we get 37/2 <= x <= 56/3, which
contains no integer value.

2.6 IntegerSolve
This section will introduce the main command of the library, 
namelyIntegerSolve.The input consists of a system of linear constraints and 
optional arguments. The system of constrainsts can be given either as two lists 
(one for linear equations, one for linear inequalities) or two matrices (defining 
respectively linear equations and linear inequalities). These two different input 
formats correspond to two different implementations (one using sparse 
polynomial expressions and one using dense linear algebra) of the same 
algorithm. The output is a list of Z-polyhedra, the union of which represents 
the integer points of the input polyhedron. Each of these output Z-polyhedra 
has at least one integer point and enjoys a property similar to that of a regular 
chain: every integer point in a projection of that Z-polyhedron can be lifted to 
an integer point of that Z-polyhedron.
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The command takes optional boolean arguments dark_shadow, grey_shadow, 
HNF and partition, all with default values true. It calls the commands 
DarkShadow and GreyShadow. If we turn off dark_shadow (set it to be false), 
this function will only implement the GreyShadow. Same with the grey_shadow.
 The option HNF is to choose the methods (HNF or Pugh's method) to solve the 
equations. The options partition is to determine whether we want a disjoint 
decomposition of the integer points or not.

restar t :  PLHD:=Polyhedra( [x ,y ,z ] ) :  w i th (PLHD) :
e q u a t i o n s  : =  [ ] ;  i n e q u a l i t i e s  : =  [ 3 * x - 2 * y + z < =  7 ,  - 2 * x + 2 * y - z  
< =  1 2 ,  - 4 * x + y + 3 * z  < =  1 5 ,  - y  < =  - 2 5 ] ; v a r s : = [ x ,  y ,  z ] ;
r e s : = I n t e g e r S o l v e ( e q u a t i o n s ,  i n e q u a l i t i e s ,  v a r s ,  t r u e ,  t r u e ,
t r u e ,  t r u e ) ;
map(Disp lay ,  res ) ;
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r e s : = I n t e g e r S o l v e ( e q u a t i o n s ,  i n e q u a l i t i e s ,  v a r s , t r u e ,  t r u e ,  
f a l s e ,  t r u e ) ;
map(Disp lay ,  res ) ;

r e s : = I n t e g e r S o l v e ( e q u a t i o n s ,  i n e q u a l i t i e s , v a r s ,  t r u e ,  t r u e ,  
t r u e ,  f a l s e ) ;
map(Disp lay ,  res ) ;
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r e s : = I n t e g e r S o l v e ( e q u a t i o n s ,  i n e q u a l i t i e s ,  v a r s , t r u e ,  t r u e ,  
f a l s e ,  f a l s e ) ;
map(Disp lay ,  res ) ;
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3. Functions in Matrix form

The commands presented in this section are internal. Nevertheless, they may be of
interestt to developers. They support the implementation of IntegerSolve based on
dense linear algebra. This latter is likely to be faster than the implementation 
based on polynomial expression for test-cases where polyhedra have large 
numbers of facets and where computations tend to densify.  In this section,  all 
the three functions have the same input format, that is, ME_in :: {Matrix, list}, 
MI_in :: {Matrix, list}, where ME_in and MI_in represent systems of equations and 
inequalities, respectively. See the following example:

M E _ i n  : =  [ ] ;
M I _ i n  : =  [ [ 3 ,  - 2 ,  1 ,  7 ] ,  [ - 2 ,  2 ,  - 1 ,  1 2 ] ,  [ - 4 ,  1 ,  3 ,  1 5 ] ,  [ 0 ,  
- 1 ,  0 ,  - 2 5 ] ] ;

This is equivalent to input: equations := [ ]; 
            inequalities := [3*x1-2*x2+x3 <= 7, -2*x1+2*x2-x3 <= 12, -4*x1 + x2 + 
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3*x3 <= 15, -x2 <= -25];
Note that this is the example we used above.

3.1 LAFMelim
Input ME_in :: {Matrix, list}, MI_in :: {Matrix, list}, the function LAFMelim will 
compute its the real projection over rational numbers, based the Fourier-
Motzkin elimination.
Ouptput ME_out :: {Matrix, list} and MI_out :: {Matrix, list}, where ME_out and 
MI_out represent systems of equations and inequalities, respectively.

PLHD:-LAFMelim(ME_in, MI_in);

3.2 LACanonicalize
Input ME_in :: {Matrix, list}, MI_in :: {Matrix, list}, the function LAFMelim will solve 
the equations, remove the redundant inequalites and output a block-
triangularlized matrix.
Output ME_out :: {Matrix, list} and MI_out :: {Matrix, list}, where ME_out and MI_out
represent systems of equations and inequalities, respectively.

PLHD:-LACanonicalize(ME_in, MI_in);
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3.3 LAIntegerSolve
Input ME_in :: {Matrix, list}, MI_in :: {Matrix, list}, the function LAIntegerSolve will 
decompose the polyhedron represented by them into several "simpler" polyhedra, 
each "simpler" polyhedron contains at least one integer point and all the integer 
points in the original polyhedron lie in exactly one "simpler" polyhedron.

dec := PLHD:-LAIntegerSolve(ME_in,  MI_in);  
map(PLHD:-Display, dec);
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t ime(PLHD:-LAIntegerSolve(ME_in,  MI_in));
0.826

e q u a t i o n s  : =  [ ] ;  i n e q u a l i t i e s  : =  [ 3 * x - 2 * y + z < =  7 ,  - 2 * x + 2 * y - z  < =  
1 2 ,  - 4 * x + y + 3 * z  < =  1 5 ,  - y  < =  - 2 5 ] ; v a r s : = [ x ,  y ,  z ] ;
t ime(PLHD: - In tegerSolve(equat ions ,  inequa l i t ies ) ) ;

2.442


